Histone H2A subtypes associate interchangeably in vivo with histone H2B subtypes.

نویسندگان

  • D Kolodrubetz
  • M C Rykowski
  • M Grunstein
چکیده

The yeast Saccharomyces cerevisiae contains two primary sequence subtypes of histone H2B (H2B1 and H2B2) and of H2A (H2A1 and H2A2). Mutants in each of the H2B subtypes have been used to show previously that yeast cells lacking one or the other, but not both, of the H2B proteins are viable. Because H2A protein interacts in the nucleosome with H2B, we wished to determine whether specific H2A subtypes must interact with specific H2B subtypes. We describe experiments in which frameshift mutations were introduced into both of the H2A genes in vitro and the mutant genes integrated into the yeast genome, replacing the wild-type H2A genes by a subsequent recombination. Using these mutant (hta1- and hta2-) strains we find that neither H2A gene has a unique essential function during any phase of the yeast life cycle, although strains homozygous for hta1- grow more slowly. However, one functional H2A gene is required for viability because cells mutant in both H2A genes arrest at spore germination prior to bud separation. By combining these H2A mutations with the H2B mutations obtained previously, we show that all combinations of H2A and H2B subtypes produce viable cells. From these genetic experiments and electrophoretic analysis of the histone proteins of these mutants we conclude that the H2A subtypes can associate interchangeably with the H2B subtypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry.

The nucleosome, the fundamental structural unit of chromatin, contains an octamer of core histones H3, H4, H2A, and H2B. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function, analysis of histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report t...

متن کامل

A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT

Nucleosome assembly in vivo requires assembly factors, such as histone chaperones, to bind to histones and mediate their deposition onto DNA. In yeast, the essential histone chaperone FACT (FAcilitates Chromatin Transcription) functions in nucleosome assembly and H2A-H2B deposition during transcription elongation and DNA replication. Recent studies have identified candidate histone residues tha...

متن کامل

Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in Saccharomyces cerevisiae.

The essential histone chaperone FACT plays a critical role in DNA replication, repair, and transcription, primarily by binding to histone H2A-H2B dimers and regulating their assembly into nucleosomes. While FACT histone chaperone activity has been extensively studied, the exact nature of the H2A and H2B residues important for FACT binding remains controversial. In this study, we characterized t...

متن کامل

Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46.

Post-translational histone modifications play important roles in regulating gene expression programs, which in turn determine cell fate and lineage commitment during development. One such modification is histone ubiquitination, which primarily targets histone H2A and H2B. Although ubiquitination of H2A and H2B has been generally linked to gene silencing and gene activation, respectively, the fu...

متن کامل

Structural evidence for Nap1‐dependent H2A–H2B deposition and nucleosome assembly

Nap1 is a histone chaperone involved in the nuclear import of H2A-H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A-H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1-mediated H2A-H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 24  شماره 

صفحات  -

تاریخ انتشار 1982